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Abstract. The tools of presymplectic geometry are used to study light-ray trajectories in
anisotropic media.

The usefulness of Lie—Hamilton optics in many different problems such as ray tracing
for ray design and computation of aberrations suggests the study of what happens for
anisotropic media, because of the recent interest in the use of anisotropic optical material.
This motivated a very recent paper [1] where the Hamiltonian formulation of geometric
anisotropic optics was studied. The theory was re-examined in [2]. The basic principle of
the theory is the celebrated Fermat principle of least time (or extremal time if reflection is
also allowed). In other words, light rays connecting poittand B are lines in space such

that they satisfy the following variational condition:

B
8/A nds = 0. 1)

The refractive index of the medium is given by the quotiert ¢/v, and then physics
tells us thatn > 1.

In a recent paper [3] we analysed from a geometric perspective the relationship for the
case of isotropic media of the problem of determination of extremal curves for (1) with
that of the geodesics of a Riemannian metric conformal to the Euclidean metric. We will
consider here the case in which the medium is not isotropic but may depend on the velocity
or, more specifically, on the direction of the ray. In this last case the problem cannot be
reduced to a problem of Riemannian geometry as when the refractiveinugly depended
on the position. So, the techniques of presymplectic geometry are unavoidable for dealing
with this dependence of the refractive index on the ray direction.

To begin we note the strong similarity between Fermat’'s principle and the more
traditional Hamilton’s principle of classical mechanics, with a Lagrangian function given

by
L =n./g(,v). (2)
This Lagrangian function is differentiable only in the set of velocity phase space obtained
by removing the null velocity points, i.e. the zero section of the tangent bundle. Moreover,
the Lagrangian. is homogeneous of degree one,
AL
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and consequently the corresponding energy function vanishes identically. Therefore the
Lagrangian is singular, because taking derivatives with respect wf both sides of the
preceding equation we obtain

2L .
— ' =0 4)
Jvtav/
and then the Hessian matrix
92L
i = A 5
J 81)181)‘] ( )

is singular. The theory should be carefully re-examined using the tools of presymplectic
geometry, as in [3] for isotropic media, where the tools of Riemannian geometry were
shown to be very useful. Actually, it is possible to show that in the latter case the solution
curves for the regular Lagrangian system described by the regular Lagrangian

L = jn%(v, v) ®6)

are just the curves solution of the original problem, even if the curves are reparametrized
(see e.g. [4] and references therein). Our aim is to analyse what happens in the more general
case in which the refractive index can depend on the ray direction, i.e. the refractive index
is a homogeneous function of degree zero of velocities in the set obtained by removing the
zero section of the velocity phase espace.

The geometric approach to Lagrangian classical mechanics uses as velocity phase space
the tangent bundl& M of the configuration spac# that is assumed to be a differentiable
manifold of dimensionN. From now on we will follow the notation used in [5]. The
tangent structure is characterized bylal)-tensor field called vertical endomorphissh
that in terms of natural coordinatég’, v') of the tangent bundl& M is given by

d )
= - ® dq'. (7)
av'

Given a functionL € C*(T M), we may define an exact 2-form IhM, w; = —do,,
with the 1-form6; being defined by; = dL o S, and a functiont; = A(L) — L, called
the energy function. In the above mentioned coordinate &f we have the following
expressions:

S

oL .
0 = .— dg' 8)
ov
92 ‘ 92L ‘ ‘
= - dg’ ANdqg' ——dg' A dv/ 9
OL= Ggiau N Gy SN ©)
9
A=v— 10
Vo (10)
oL
E, =v— — L. (11)
ov?

Here A € X(T M) denotes the Liouville vector field generating dilations along the fibres.
When w; is non-degenerate, i.e. the Hessian matrix (5) is regular, it defines a symplectic
structure on7 M, and a vector field", uniquely determined byI";)w, = dE;.

We will next examine the problem of light rays, even for the more general case in
which the refractive index depends on the ray direction. This means that the refractive
index must be homogeneous of degree zero in the velocities= 0. We define a new
LagrangianL. = %LZ. The Lagrangiarl is homogeneous of degree two in the velocities,
AL = 2L = L2, and thenEy, = L.
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Now taking into account tha#;, = dL o S we see that the Liouville 1-forndy, is
proportional tod;, namely,0;, = L6,, (see [6]) and then

1 1
=— — dL A 6. 12
@ = oL + 3 L (12)
As indicated above, when the refractive indexdoes not depend on velocities the
2-form wy, is regular. In this more general case, however, it may be singular, because
wp, = Lop — dL A 6r (13)
means that
oV = LoV = NLV AL A6, A )N P = —NLY AL A 6, A )T (14)
and thenw;*" can be identically null and in this cagewould be singular.

In the following we will restrict ourselves to the case in whiclis regular and therefore
there will be a uniquely defined vector field, such that

i(FL)wL = dE]L = d]L (15)
and then
i) (L) =T'IL) = 0. (16)

Moreover,I'y, is a second-order differential equation vector field.
First we check that the Liouville vector field lies in kerw; . Indeed,

i(Awp = E i(A)owr, + iA]LQ]L — i dL@i(A)6L) a7
L L3 L3

and taking into account that is vertical andd, semibasic, the last term vanishes. Moreover,

(Ao = —LA0L +d({i(A)0L) = —LAOL = 6L (18)
and therefore, taking into account thal. = 2. = L?, we find that

i(Awr =0. (19)
Secondly,I';, is also in the kernel ofy; , because

(Toor = 7 i(Ton+ 5L — o dLT)6] (20)
andT'; being a second-order differential equation,

i(F)6, = (dLo $)(I't) = AL = 2L = L2 (21)
and therefore

i(TL)wy, = 0. (22)

Finally under the assumption thitis regular, ket is generated by andI'y,. Indeed,
given a vertical vector field/ € kerw,, then,

. 1. 1

0=i(V)w, = 7 i(V)or, + ﬁV(]L)GL (23)
and, in particular,

1 1 1

—iA =——AL)o, = —— 24

LI( oL, 3 IL)or L91L (24)
and therefore

V(L)

(VoL = — 5" i(A)or (25)
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and aswy, is assumed to be regular,should be proportional ta.. Then, dimV (kerw;) = 1
and because of the relation dikerw;) < 2dimV (kerw;) (see [7]), we can conclude that
dimkkerw;) = 2.

Under these circumstances is possible to apply the reduction theory of presymplectic
manifolds, following the ideas developed by Marsden and Weinstein [8]. Presymplectic
structures may arise either when using some constants of motion for reducing the phase
space or also when the Lagrangian that has been chosen is singular. Then we will have
a pair (Py, 20) Where Qg is a closed but degenerate 2-form. A consistent solution of
the dynamical equation can only be found at some points, leading in this way to the final
constraint submanifol@ introduced by Dirac (see e.g. [9]). The pull-baelof the form2g
on this manifold will be assumed to be of constant rank. The recipe for dealing with these
systems was given by Marsden and Weinstein [8]. First, at every poiat P, ker2,,
is a k-dimensional linear space, so defining what is called-@imensional distribution.

The important point is that closedness @fis enough to warrant that the distribution is
integrable (and then it is called foliation): for any pointe P, there is ak-dimensional
submanifold of P passing througl: and such that the tangent space at any painf this
surface coincides with ke&e,,,. Such integrak-dimensional submanifolds give a foliation

of P by disjoint leaves and in the case in which the quotient space P/kerQ is a
differentiable manifold, then it is possible to define a non-degenerate closed 2¥dam

P such that7*Q = Q. Here#:P — P is the natural projection. It suffices to define
Q(1, T2) = Q(v1, v2), wherev, and v, are tangent vectors t8 projecting undetz, onto

71 and, respectively. The symplectic spac®, ) is said to be the reduced space. We will
illustrate the method finding coordinates adapted to the distribution defined by the kernel
kerw; of the presymplectic structure defined by the singular optical Lagrangian in the case
of a system in which either the indexdepends on the third coordinaté alone or the very
interesting case in which the system is anisotropic ansl a function of the ray direction.

We will determine the quotient reduced space and we will look for Darboux coordinates
in this reduced symplectic manifold. Once Darboux coordinates have been found we can
consider the problem from the active viewpoint and take advantage of the algebraic methods
recently developed for computing aberrations (see e.g. [10]).

Let us now consider the most general isotropic case in which the refractive index of
the medium is not constant but it is given by a smooth functignt, x?, x%). Fermat's
principle suggests that we should consider the corresponding mechanical problem described
by a singular Lagrangiai(g, v) = [g(v, v)]Y?, whereg is a metric conformal to the
Euclidean metrigo,

g(v, w) = n"go(v, w). (26)

This problem was analysed in [6] where, as cited above, it was shown that its
study can be reduced to that of a regular Lagrandiae %LZ. This LagrangianL is
guadratic in velocities and the dynamical vector fiEldsolution of the dynamical equation
i(lL)wr, = dEL, = dL is not only a second-order differential equation vector field but,
moreover, it is a spray [11], the projection ofitd of its integral curves being the geodesics
of the Levi-Civita connection defined ky. Then,TI';, is the geodesic spray given by

i 0 i j ok d
F]L =0 aiql — ijUJU 81)1, (27)
where the Christoffel symbolE;, are
i L |08 | 98 08k
: 2 dg/  dq aq
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with g/ being the inverse matrix of;;.

In the particular case we are considering where, w) = n?go(v, w), it was also
shown above that the kernel af; is two-dimensional and it is generated by and the
Liouville vector field A. The distribution defined by ker; is integrable because; is
closed; actually A, '] = I' and the distribution is also generated Ayand K defined
by K = (1/v®)I'y, for which [A, K] = 0. In Cartesian coordinates the Christoffel symbols

are expressed as follows
1[ on on ; on
: [M.ak o g Mak] . (29)

and the vector fielX is given as

[
ri, =

17,9 2 . lvll2 on\ @
K=—|vV——-Vv{@-Vn) - . - . 30
v |:v Ox! (nv (v-Vn) n axi ) v (30)
The theory of distributions suggests to us the introduction of new local coordinates
yi = Fi(x,v),i =1,...,6, adapted to the distribution defined by kgr, i.e. such that

K =9/3y%, A = 3/8y® (see [12]). The search for these new coordinates is based on the
solution of the partial differential equation system
KF'=1 AF'=0 KF>=0 AF?=1
and
KF?* =0 AF? =0 fora=1,...,4
The explicit computation of these functions depends very much on the choice of the

function n(x?, x2, x3). Next, we will illustrate the theory with an particular example.nIf
only depends on?, the presymplectic form can be written as

1 2
a)dexl/\d< i >+dx2Ad< no )

/ 12 2 2 / 12 2 2
Ul + U2 + U3 Ul + U2 + U3

32 1 2
SRS LA [:ﬂd(”) A dx3+v2d(v> A dﬁ} (31)
W12 4 v2? 4 p3?)32 v3 v3
and the dynamical vector field is
0 2 300 9 2 , 5,00 9 1 12 2 g dn 0
o nl Uddar at U ddaz Ta TV TV a3
After some calculations we find the solution of the former systems (see [3]). According
to this, we will make the following choice of the new coordinates:

F]L = Ui (32)

Ul
yl=x1— —sz (33)
v
X3
y2 = x2 - / G d¢ (34)
o Jo2o) - cha+c
yi=x8 (35)
1
A L — (36)
Vuls 4925 43
2
nv
W= g 37)
V1% 02 03

y® =log |:n\/ V1?2 4022 4 v32i| (38)
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where

Cr=" (39)

12 22
Comnm (40)
Ul + l}2 + U3

doing the inverse change and, after some easy calculations,

and

4
&L =d <y1 + isyz) A dy* 4+ dy? A dy® (41)

remains which shows that

4 1 X3
| = & @2)
y vl Jwao - cha+cd
x3
£2 = x2 — / Ca d¢ (43)
0 Jo20) - ChHA+C?)
and the corresponding
1_ 4 nvt 2_ .5 nv?

n=y"= n=y>= (44)
V1% 4022 4 932 V1% 4922 4 32
are Darboux coordinates for the symplectic form induced in the quotient space.
Let us now consider the particular but important case case in which the refractive index
becomes constant out of a region. If, fof > L, the indexn is constant, the above
mentioned Darboux coordinaté$ and£2 are

C3x3

B Jn2—chHa+cd

1 3
v Csx
gl=

52 — )CZ
v? \/ (n? — C3(1+ C?)

up to a constant, and from the expressiongfpandCs we see that the Darboux coordinates
become

1 2 1 2
v v nv nv
xl— =43 x?— —x3 (45)

v3 v3 /12 4 22 4 32 V12 422 4 )32

in full agreement with [13]. Therefore, for an optical system such that the refractive index
depends only onx® and, furthermore, the region in which the index is not constant is
bounded, we can choose Darboux coordinates by fixingasutside this region and taking
Darboux coordinates for the corresponding problem of constant index. This justifies the
choice of coordinates as is usually done for the ingoing and outgoing light rays in the
corresponding constant index media, i.e. it shows the convenience of using flat screens in
distant enough regions on the left and right respectively, and then this change of Darboux
coordinates seems to be, from an active viewpoint, a canonical transformation (see [14]).

We will next find the symplectic structure arising in an anisotropic optical medium, as
well as some Darboux coordinates for it. We recall that we are only considering anisotropic
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media for which the refractive index depends only on the ray directionn i-e.n(v) but
An = 0. In this case the presymplectic form remains as

02 ;0 . A
P T T L N 1
axio vl ax/

92 ;0 9 : :
T T A ”a;} dr' A dv; (46)
dv;jdv; vl dv; vl v vl vl

and the vector field associated with

d
F]L =V —. (47)
dx!

+[|Ivll

We still have that
[A,TL] =T (48)

and then kew; defines an involutive, and hence an integrable, distribution that is also
generated by\ and K, K being the vector field

1
K= "Ty (49)

vZ
commuting withA. In this way, we can find new local coordinates adapted to the distribution
that allow us to find later on the symplectic form in the quotient manifold, by solving the
following differential equation systems:

Af=0 Kf=0 (50)
Af =1 Kf=0 (51)
Af=0 Kf=1 (52)

According to the solution of the former systems we will make the following choice of the
new coordinates:

v Uy

= —z-—x xz:v—’z—y X3=72 (53)
v v

yi=— yo=— y3 = logwv; (54)
v, v,

the inverse change being given by
X = y1x3— X1 Y = y2X3— X2 Z=2x3 (55)
vy = y1EXPy3 vy = y2E€XPy3 v; = eXpys. (56)

Moreover, in the reduction of the presymplectic form we must point out that the condition
An = 0 is written in the new coordinates a8/dys = 0. Finally, using the former change

of coordinate, we get after some calculations the following symplectic form in the quotient
manifold

- n on
@ =d $+\/yf+y§+la— A dxg
VyE+yi+1 M

n on
$+\/yf+y22+1a—y2 A drs (57)

yE+ys+1

which is in full agreement with [13].
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As a final comment, let us remark that, even in this case, if we restrict ourselves to a
region of constant index, we recover the Darboux coordinates for constant index medium
and we can think of the relation betwen the ingoing and outgoing light rays as a change
of Darboux coordinates. Therefore this change of Darboux coordinates seems to be again,
from an active viewpoint, a canonical transformation. The transformations of phase space
will be, in general, nonlinear, i.e. they generate optical aberrations. It is possible, finally, to
analyse these aberrations using both group theoretical and Lie algebraic tools (see [10, 13],
and references therein).
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