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Abstract. The tools of presymplectic geometry are used to study light-ray trajectories in
anisotropic media.

The usefulness of Lie–Hamilton optics in many different problems such as ray tracing
for ray design and computation of aberrations suggests the study of what happens for
anisotropic media, because of the recent interest in the use of anisotropic optical material.
This motivated a very recent paper [1] where the Hamiltonian formulation of geometric
anisotropic optics was studied. The theory was re-examined in [2]. The basic principle of
the theory is the celebrated Fermat principle of least time (or extremal time if reflection is
also allowed). In other words, light rays connecting pointsA andB are lines in space such
that they satisfy the following variational condition:

δ

∫ B

A

n ds = 0. (1)

The refractive index of the medium is given by the quotientn = c/v, and then physics
tells us thatn > 1.

In a recent paper [3] we analysed from a geometric perspective the relationship for the
case of isotropic media of the problem of determination of extremal curves for (1) with
that of the geodesics of a Riemannian metric conformal to the Euclidean metric. We will
consider here the case in which the medium is not isotropic but may depend on the velocity
or, more specifically, on the direction of the ray. In this last case the problem cannot be
reduced to a problem of Riemannian geometry as when the refractive indexn only depended
on the position. So, the techniques of presymplectic geometry are unavoidable for dealing
with this dependence of the refractive index on the ray direction.

To begin we note the strong similarity between Fermat’s principle and the more
traditional Hamilton’s principle of classical mechanics, with a Lagrangian function given
by

L = n
√

g(v, v). (2)

This Lagrangian function is differentiable only in the set of velocity phase space obtained
by removing the null velocity points, i.e. the zero section of the tangent bundle. Moreover,
the LagrangianL is homogeneous of degree one,

vi ∂L

∂vi
= L (3)
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and consequently the corresponding energy function vanishes identically. Therefore the
Lagrangian is singular, because taking derivatives with respect tovj of both sides of the
preceding equation we obtain

∂2L

∂vi∂vj
vi = 0 (4)

and then the Hessian matrix

Wij = ∂2L

∂vi∂vj
(5)

is singular. The theory should be carefully re-examined using the tools of presymplectic
geometry, as in [3] for isotropic media, where the tools of Riemannian geometry were
shown to be very useful. Actually, it is possible to show that in the latter case the solution
curves for the regular Lagrangian system described by the regular Lagrangian

L = 1
2n2g(v, v) (6)

are just the curves solution of the original problem, even if the curves are reparametrized
(see e.g. [4] and references therein). Our aim is to analyse what happens in the more general
case in which the refractive index can depend on the ray direction, i.e. the refractive index
is a homogeneous function of degree zero of velocities in the set obtained by removing the
zero section of the velocity phase espace.

The geometric approach to Lagrangian classical mechanics uses as velocity phase space
the tangent bundleT M of the configuration spaceM that is assumed to be a differentiable
manifold of dimensionN . From now on we will follow the notation used in [5]. The
tangent structure is characterized by a(1, 1)-tensor field called vertical endomorphismS
that in terms of natural coordinates(qi, vi) of the tangent bundleT M is given by

S = ∂

∂vi
⊗ dqi. (7)

Given a functionL ∈ C∞(T M), we may define an exact 2-form inT M, ωL = −dθL,
with the 1-formθL being defined byθL = dL ◦ S, and a functionEL = 1(L) − L, called
the energy function. In the above mentioned coordinates ofT M we have the following
expressions:

θL = ∂L

∂vi
dqi (8)

ωL = ∂2L

∂qi∂vj
dqj ∧ dqi + ∂2L

∂vi∂vj
dqi ∧ dvj (9)

1 = vi ∂

∂vi
(10)

EL = vi ∂L

∂vi
− L. (11)

Here1 ∈ X (T M) denotes the Liouville vector field generating dilations along the fibres.
When ωL is non-degenerate, i.e. the Hessian matrix (5) is regular, it defines a symplectic
structure onT M, and a vector field0L uniquely determined by i(0L)ωL = dEL.

We will next examine the problem of light rays, even for the more general case in
which the refractive indexn depends on the ray direction. This means that the refractive
index must be homogeneous of degree zero in the velocities,1n = 0. We define a new
LagrangianL = 1

2L2. The LagrangianL is homogeneous of degree two in the velocities,
1L = 2L = L2, and thenEL = L.
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Now taking into account thatθL = dL ◦ S we see that the Liouville 1-formθL is
proportional toθL, namely,θL = LθL, (see [6]) and then

ωL = 1

L
ωL + 1

L3
dL ∧ θL. (12)

As indicated above, when the refractive indexn does not depend on velocities the
2-form ωL is regular. In this more general case, however, it may be singular, because

ωL = LωL − dL ∧ θL (13)

means that

ω∧N
L = LNω∧N

L − NLN−1 dL ∧ θL ∧ ω
∧(N−1)
L = −NLN−1 dL ∧ θL ∧ ω

∧(N−1)
L (14)

and thenω∧N
L can be identically null and in this caseL would be singular.

In the following we will restrict ourselves to the case in whichL is regular and therefore
there will be a uniquely defined vector field0L such that

i(0L)ωL = dEL = dL (15)

and then

i(0L)(dL) = 0L(L) = 0. (16)

Moreover,0L is a second-order differential equation vector field.
First we check that the Liouville vector field1 lies in kerωL. Indeed,

i(1)ωL = 1

L
i(1)ωL + 1

L3
1LθL − 1

L3
dL(i(1)θL) (17)

and taking into account that1 is vertical andθL semibasic, the last term vanishes. Moreover,

i(1)ωL = −L1θL + d(i(1)θL) = −L1θL = −θL (18)

and therefore, taking into account that1L = 2L = L2, we find that

i(1)ωL = 0. (19)

Secondly,0L is also in the kernel ofωL, because

i(0L)ωL = 1

L
i(0L)ωL + 1

L3
(0LL)θL − 1

L3
dL[i(0L)θL] (20)

and0L being a second-order differential equation,

i(0L)θL = (dL ◦ S)(0L) = 1L = 2L = L2 (21)

and therefore

i(0L)ωL = 0. (22)

Finally under the assumption thatL is regular, kerωL is generated by1 and0L. Indeed,
given a vertical vector fieldV ∈ kerωL, then,

0 = i(V )ωL = 1

L
i(V )ωL + 1

L3
V (L)θL (23)

and, in particular,

1

L
i(1)ωL = − 1

L3
1(L)θL = − 1

L
θL (24)

and therefore

i(V )ωL = V (L)

L2
i(1)ωL (25)
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and asωL is assumed to be regular,V should be proportional to1. Then, dimV (kerωL) = 1
and because of the relation dim(kerωL) 6 2 dimV (kerωL) (see [7]), we can conclude that
dim(kerωL) = 2.

Under these circumstances is possible to apply the reduction theory of presymplectic
manifolds, following the ideas developed by Marsden and Weinstein [8]. Presymplectic
structures may arise either when using some constants of motion for reducing the phase
space or also when the Lagrangian that has been chosen is singular. Then we will have
a pair (P0, �0) where �0 is a closed but degenerate 2-form. A consistent solution of
the dynamical equation can only be found at some points, leading in this way to the final
constraint submanifoldP introduced by Dirac (see e.g. [9]). The pull-back� of the form�0

on this manifold will be assumed to be of constant rank. The recipe for dealing with these
systems was given by Marsden and Weinstein [8]. First, at every pointm ∈ P , ker�m

is a k-dimensional linear space, so defining what is called ak-dimensional distribution.
The important point is that closedness of� is enough to warrant that the distribution is
integrable (and then it is called foliation): for any pointm ∈ P , there is ak-dimensional
submanifold ofP passing throughm and such that the tangent space at any pointm′ of this
surface coincides with ker�m′ . Such integralk-dimensional submanifolds give a foliation
of P by disjoint leaves and in the case in which the quotient spaceP̃ = P/ ker� is a
differentiable manifold, then it is possible to define a non-degenerate closed 2-form�̃ in
P̃ such thatπ̃∗�̃ = �. Here π̃ :P → P̃ is the natural projection. It suffices to define
�̃(ṽ1, ṽ2) = �(v1, v2), wherev1 andv2 are tangent vectors toP projecting underπ̃∗ onto
ṽ1 andṽ2 respectively. The symplectic space(P̃ , �̃) is said to be the reduced space. We will
illustrate the method finding coordinates adapted to the distribution defined by the kernel
kerωL of the presymplectic structure defined by the singular optical Lagrangian in the case
of a system in which either the indexn depends on the third coordinatex3 alone or the very
interesting case in which the system is anisotropic andn is a function of the ray direction.
We will determine the quotient reduced space and we will look for Darboux coordinates
in this reduced symplectic manifold. Once Darboux coordinates have been found we can
consider the problem from the active viewpoint and take advantage of the algebraic methods
recently developed for computing aberrations (see e.g. [10]).

Let us now consider the most general isotropic case in which the refractive index of
the medium is not constant but it is given by a smooth functionn(x1, x2, x3). Fermat’s
principle suggests that we should consider the corresponding mechanical problem described
by a singular LagrangianL(q, v) = [g(v, v)]1/2, where g is a metric conformal to the
Euclidean metricg0,

g(v, w) = n2g0(v, w). (26)

This problem was analysed in [6] where, as cited above, it was shown that its
study can be reduced to that of a regular LagrangianL = 1

2L2. This LagrangianL is
quadratic in velocities and the dynamical vector field0L solution of the dynamical equation
i(0L)ωL = dEL = dL is not only a second-order differential equation vector field but,
moreover, it is a spray [11], the projection ontoR3 of its integral curves being the geodesics
of the Levi-Civita connection defined byg. Then,0L is the geodesic spray given by

0L = vi ∂

∂qi
− 0i

jkv
j vk ∂

∂vi
(27)

where the Christoffel symbols0i
jk are

0i
jk = 1

2
gil

[
∂gkl

∂qj
+ ∂gjl

∂qk
− ∂gjk

∂ql

]
(28)
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with gij being the inverse matrix ofgij .
In the particular case we are considering whereg(v, w) = n2g0(v, w), it was also

shown above that the kernel ofωL is two-dimensional and it is generated by0L and the
Liouville vector field 1. The distribution defined by kerωL is integrable becauseωL is
closed; actually [1, 0L] = 0L and the distribution is also generated by1 and K defined
by K = (1/v3)0L, for which [1, K] = 0. In Cartesian coordinates the Christoffel symbols
are expressed as follows

0i
jk = 1

n

[
∂n

∂xj
δi
k + ∂n

∂xk
δi
j − ∂n

∂xi
δ

j

k

]
. (29)

and the vector fieldK is given as

K = 1

v3

[
vi ∂

∂xi
−

(
2

n
vi(v · ∇n) − ‖v‖2

n

∂n

∂xi

)
∂

∂vi

]
. (30)

The theory of distributions suggests to us the introduction of new local coordinates
yi = F i(x, v), i = 1, . . . , 6, adapted to the distribution defined by kerωL, i.e. such that
K = ∂/∂y3, 1 = ∂/∂y6 (see [12]). The search for these new coordinates is based on the
solution of the partial differential equation system

KF 1 = 1 1F 1 = 0 KF 2 = 0 1F 2 = 1

and

KF 2+a = 0 1F 2+a = 0 for a = 1, . . . , 4.

The explicit computation of these functions depends very much on the choice of the
function n(x1, x2, x3). Next, we will illustrate the theory with an particular example. Ifn

only depends onx3, the presymplectic form can be written as

ωL = dx1 ∧ d

(
nv1√

v12 + v22 + v32

)
+ dx2 ∧ d

(
nv2√

v12 + v22 + v32

)

+ nv32

(v12 + v22 + v32
)3/2

[
v1 d

(
v1

v3

)
∧ dx3 + v2 d

(
v2

v3

)
∧ dx3

]
(31)

and the dynamical vector field is

0L = vi ∂

∂xi
− 2

n
v1v3 dn

dx3

∂

∂v1
− 2

n
v2v3 dn

dx3

∂

∂v2
+ 1

n
(v12 + v22 − v32

)
dn

dx3

∂

∂v3
. (32)

After some calculations we find the solution of the former systems (see [3]). According
to this, we will make the following choice of the new coordinates:

y1 = x1 − v1

v2
x2 (33)

y2 = x2 −
∫ x3

0

C3√
(n2(ζ ) − C2

3)(1 + C2
1)

dζ (34)

y3 = x3 (35)

y4 = nv1√
v12 + v22 + v32

(36)

y5 = nv2√
v12 + v22 + v32

(37)

y6 = log

[
n

√
v12 + v22 + v32

]
(38)
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where

C1 = v1

v2
(39)

and

C3 = n

√
v12 + v22

v12 + v22 + v32 (40)

doing the inverse change and, after some easy calculations,

ω̃L = d

(
y1 + y4

y5
y2

)
∧ dy4 + dy2 ∧ dy5 (41)

remains which shows that

ξ1 = y1 + y4

y5
y2 = x1 − v1

v2

∫ x3

0

C3√
(n2(ζ ) − C2

3)(1 + C2
1)

dζ (42)

ξ2 = x2 −
∫ x3

0

C3√
(n2(ζ ) − C2

3)(1 + C2
1)

dζ (43)

and the corresponding

η1 = y4 = nv1√
v12 + v22 + v32

η2 = y5 = nv2√
v12 + v22 + v32

(44)

are Darboux coordinates for the symplectic form induced in the quotient space.
Let us now consider the particular but important case case in which the refractive index

becomes constant out of a region. If, forx3 > L, the indexn is constant, the above
mentioned Darboux coordinatesξ1 andξ2 are

ξ1 = x1 − v1

v2

C3x
3√

(n2 − C2
3)(1 + C2

1)

ξ2 = x2 − C3x
3√

(n2 − C2
3)(1 + C2

1)

up to a constant, and from the expressions forC1 andC3 we see that the Darboux coordinates
become

x1 − v1

v3
x3 x2 − v2

v3
x3 nv1√

v12 + v22 + v32

nv2√
v12 + v22 + v32

(45)

in full agreement with [13]. Therefore, for an optical system such that the refractive index
depends only onx3 and, furthermore, the region in which the index is not constant is
bounded, we can choose Darboux coordinates by fixing anx3 outside this region and taking
Darboux coordinates for the corresponding problem of constant index. This justifies the
choice of coordinates as is usually done for the ingoing and outgoing light rays in the
corresponding constant index media, i.e. it shows the convenience of using flat screens in
distant enough regions on the left and right respectively, and then this change of Darboux
coordinates seems to be, from an active viewpoint, a canonical transformation (see [14]).

We will next find the symplectic structure arising in an anisotropic optical medium, as
well as some Darboux coordinates for it. We recall that we are only considering anisotropic
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media for which the refractive index depends only on the ray direction, i.e.n = n(v) but
1n = 0. In this case the presymplectic form remains as

ωL =
[
‖v‖ ∂2n

∂xj∂vi

+ vi

‖v‖
∂n

∂xj

]
dxi ∧ dxj

+
[
‖v‖ ∂2n

∂vj∂vi

+ vi

‖v‖
∂n

∂vj

+ vj

‖v‖
∂n

∂vi

− n

‖v‖3
vivj + n

‖v‖δi
j

]
dxi ∧ dvj (46)

and the vector field associated withL

0L = vi

∂

∂xi
. (47)

We still have that

[1, 0L] = 0L (48)

and then kerωL defines an involutive, and hence an integrable, distribution that is also
generated by1 andK, K being the vector field

K = 1

vz

0L (49)

commuting with1. In this way, we can find new local coordinates adapted to the distribution
that allow us to find later on the symplectic form in the quotient manifold, by solving the
following differential equation systems:

1f = 0 Kf = 0 (50)

1f = 1 Kf = 0 (51)

1f = 0 Kf = 1. (52)

According to the solution of the former systems we will make the following choice of the
new coordinates:

x1 = vx

vz

z − x x2 = vy

vz

z − y x3 = z (53)

y1 = vx

vz

y2 = vy

vz

y3 = logvz (54)

the inverse change being given by

x = y1x3 − x1 y = y2x3 − x2 z = x3 (55)

vx = y1 expy3 vy = y2 expy3 vz = expy3. (56)

Moreover, in the reduction of the presymplectic form we must point out that the condition
1n = 0 is written in the new coordinates as∂n/∂y3 = 0. Finally, using the former change
of coordinate, we get after some calculations the following symplectic form in the quotient
manifold

ω̃L = d

 ny1√
y2

1 + y2
2 + 1

+
√

y2
1 + y2

2 + 1
∂n

∂y1

 ∧ dx1

+d

 ny2√
y2

1 + y2
2 + 1

+
√

y2
1 + y2

2 + 1
∂n

∂y2

 ∧ dx2 (57)

which is in full agreement with [13].
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As a final comment, let us remark that, even in this case, if we restrict ourselves to a
region of constant index, we recover the Darboux coordinates for constant index medium
and we can think of the relation betwen the ingoing and outgoing light rays as a change
of Darboux coordinates. Therefore this change of Darboux coordinates seems to be again,
from an active viewpoint, a canonical transformation. The transformations of phase space
will be, in general, nonlinear, i.e. they generate optical aberrations. It is possible, finally, to
analyse these aberrations using both group theoretical and Lie algebraic tools (see [10, 13],
and references therein).
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